Spectre Attacks: Exploiting Speculative Execution

Paul Kocher1, Jann Horn2, Anders Fogh3, Daniel Genkin4,
Daniel Gruss5, Werner Haas6, Mike Hamburg7, Moritz Lipp5,
Stefan Mangard5, Thomas Prescher6, Michael Schwarz5, Yuval Yarom8

1 Independent (www.paulkocher.com), 2 Google Project Zero,
3 G DATA Advanced Analytics, 4 University of Pennsylvania and University of Maryland,
5 Graz University of Technology, 6 Cyberus Technology,
7 Rambus, Cryptography Research Division, 8 University of Adelaide and Data61
Spectre attack

- Vulnerabilities in modern computers
Background: *Computer architecture*

- Instruction set architecture (ISA)
- Execution order
 - In-order
 - Out-of-order
 - Re-order buffer (ROB)
Background: *To boost CPU performance*

- Improve hardware
- Design optimization
 - *Speculative execution*
- Memory hierarchy
 - CPU-memory
 - Caches
Spectre attack overview

• Conditional branch example
 • array1 = [1,2]
 • array2 = [x, y, z]
 • x is input under the attacker’s control

```plaintext
if (x < array1_size)
    y = array2[array1[x] * 4096];
```

Memory address: 1 2 secret k

Array1[0] Array1[x] = k
Spectre attack overview

- Attacker read array2[i*4096]
 - Find i=3 is fast
 - array[x] = k has been cached
 - Then secret k =3 is revealed

- Side channel attack
Spectre attack: Brach prediction

- Attacker can misdirect the prediction

Speculation scenario (= computation error) + “Safe” computation that speculation turns unsafe + Induce computation with desired error

Side channel

Detect & analyze leaked data
Mitigation options

- Not do speculative execution
 - Trade-off between performance and security
- Preventing access to secret data
 - Add new data dependencies
- Add hardware to hide speculative execution
- Not all speculative loads leak secret
Summary

• Spectre attacks leverage the speculative execution.
• Software security depends on having a clear common understanding between hardware and software.
• Trade-off between security and performance is always a problem.
Thank you