
Lab2: Fun with system calls

Sajad Meisami

1



Topics for today

● How to add a functional system call?

● Assignments & hints:
○ Change the exit syscall signature to void exit(int status);

○ Update the wait syscall to int wait(int *status);

○ Add a waitpid syscall: int waitpid(int pid, int *status, int options);

○ Write an example program to illustrate your waitpid works.

[1]: XV6 book: https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf
[2]: XV6 syscall explained:
https://medium.com/@flag_seeker/xv6-system-calls-how-it-works-c541408f21ff

2

https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf
https://medium.com/@flag_seeker/xv6-system-calls-how-it-works-c541408f21ff


How does syscall exit() work?

Step 1: call from user space

- test.c 
- user program to make a syscall

- user.h 
- declaration of syscall in user level

- usys.S 
- macro definition which in effect as a function

- move immediate value of SYS_exit (defined in 

syscall.h) into register %eax;

- issue interrupt 64 (reserved for all system calls, 

see traps.h)

- return

3



Step2: transfer to kernel mode

- raise privilege level of CPU to kernel mode

- transfer control to trap vectors (initialized in tvinit())

- setup trapframe (see definition in x86.h)
- vector.S

- push 0 and 64 to stack

- call alltraps() in trapasm.S

- trapasm.S

- alltraps() finish trapframe

- call trap() in trap.c

- trap() function
- set trapframe and call syscall() defined in syscall.c

How does syscall exit() work?

4



Step2: transfer to kernel mode

- syscall() in syscall.c
- lookup array of function pointers;

- int function(void);

- call the sys_exit function and put 

return value in eax register.

- sys_exit() 
- implemented in sysproc.c

- helper function exit():

- defined in defs.h

- implemented in proc.c

How does syscall exit() work?

5



KernelUser 

How exit system call works

call exit()

signal!

signal get!

alltrap()

trap()

syscall()
set myproc()->tf

sys_exit()

exit()

build trap frame

6



Step-by-step instructions

7



Step 1: user application 

- Makefile - test.c

- user.h

8



- usys.S

- syscall.h

Step 2

9



- syscall.c

Step 3

10



- sysproc.c

- proc.c

- defs.h

Step 4

11



Execute & check the result

$ make qemu-nox

(... xv6 boots ...)

$ test

12



Assignment a) change exit() signature to void exit(int status)

The exit system call must act as previously defined (i.e., terminate the current process) but it 

must also store the exit status of the terminated process in the corresponding structure.

- Modify proc struct (proc.h) to include a new field that saves an exit status for a terminated 

process. (e.g. int exitStatus;)

- You can either modify existing exit() system call in place or define a new system call; note 

that if you make modifications in place, make sure you modify all locations of exit() call in 

the codebase;

- Modify all relevant files correspondingly;

13



The wait system call must prevent the current process from execution until any of its child 

processes is terminated (if any exists) and return the terminated child exit status through 

the status argument.

- The goal is to get familiar with how to return a value from kernel space to user space;

- Return the terminated child proc’s exit status through the status pointer argument; 

- understand the current wait() system call, in terms of how to traverse the ptable 

to look up for child proc;

- understand the proc structure;

Assignment b) update wait() to int wait(int *status)

14



This system call must act like wait system call with the following additional properties: 

The system call must wait for a process (not necessary a child process) with a pid that 

equals to one provided by the pid argument.

- Hint: This will be a modified version of the original wait() system call. You will need 

to traverse the ptable to find the proc with pid matches the given pid argument.

Assignment c) add a waitpid() system call

15



Assignment d) write a testing program

Write an example program to illustrate that your waitpid works. You have to modify the 

Makefile to add your testing program so that it can be executed from inside the shell once 

xv6 boots.

- In your report, show the printout of your testing program and illustrate why this 

printout proves the correctness of your implementation. 

16



To help finish lab 2 tasks:

- check out existing syscalls with parameters and return value;

- chapter 0-3 of xv6 book (https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf)

17

https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf

