Lab2: Fun with system calls

Sajad Meisami

Topics for today

e How to add a functional system call?

e Assignments & hints:
o Change the exit syscall signature to void exit(int status);
o Update the wait syscall to int wait(int *status);
o Add a waitpid syscall: int waitpid(int pid, int *status, int options);
o Write an example program to illustrate your waitpid works.

[1]: XV6 book: https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf
[2]: XV6 syscall explained:
https://medium.com/@flag_seeker/xv6-system-calls-how-it-works-c541408f21ff

https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf
https://medium.com/@flag_seeker/xv6-system-calls-how-it-works-c541408f21ff

How does syscall exit() work?

Step 1: call from user space

- test.c
- user program to make a syscall

- user.h
- declaration of syscall in user level

- usys.S
- macro definition which in effect as a function
- move immediate value of SYS exit (defined in
syscall.h) into register %eax;
- issue interrupt 64 (reserved for all system calls,
see traps.h)
- return

Asw USYS.S e test.c # - Syscal.h w trap

This file does not belong to any project target, cod
#include "types.h"
#include "stat.h"
#¥include "user.h"

int main(int argc, char =argvi(]) {
exit();

mm Vectors.S se USYS.S g 1B5

316 jmp alltraps
H d ” t k‘p 317 .glebl vectortd
ow does syscall exit() work: -
319
Step2: transfer to kernel mode 320
321
- raise privilege level of CPU to kernel mode
- transfer control to trap vectors (initialized in tvinit())
- setup trapframe (see definition in x86.h) 2 trapc ¢ g vectorsS m usysS ¢ 2 testc
T F T FULLIL M s L
- vector.S 16 void
- push 0 and 64 to stack 37 trap(struct trapframe *tf)
- call alltraps() in trapasm.S 38 {
) 39 if(tf-=trapno == T SYSCALL){
trapasm.S 40 if(myproc()-=killed)
- alltraps() finish trapframe a1 exit();
- calltrap() in trap.c 42 myproc()->tf = tf;
- trap() function - syscallll;
44 if(myproc()-=killed)
- set trapframe and call syscall() defined in syscall.c 45 exit();
a6 return; 4

47 }

108 static int (*syscalls[])(veid) = {

109 [SYS_ fork] sys_fork,
. 118 [SYS exit] sys exit,
How does syscall exit() work? .., [SYS wait] Sys wait,
112 [SYS_pipe] sys_pipe,
Step2: transfer to kernel mode 113 [SYS_read] sys_read,
- syscall() in syscall.c
- lookup array of function pointers; i
))) void
- int function(void); syscall(void)
- call the sys_exit function and put {
return value in eax register. int num;

struct proc *curproc = myproc();

- sys_exit()
- implemented in sysproc.c num = curproc—>tf-=eax;

if(num > @ & num < NELEM(syscalls) && syscalls[num]) {

- helper function exit():
P () curproc=>tf->eax = syscalls[num]();

- defined in defs.h } else {
- implemented in proc.c cprintf("%d %s: unknown sys call %d\n",
curproc->pid, curproc->name, num);
curproc—=tf-=eax = -1;
} 5

¥

How eX|t system caII works

__

call exit()

] o
signal! \
! | signal get!

A 4

alltrap()

build trap frame

trap()

set myproc()->tf

syscall()

v
sys_exit()

!

exit()

User : ! Kernel

__

Step-by-step instructions

Step 1: user application

. UPRDGS=| 1 #include "types.h"
- Makefile _cat| - testc 2 #include "stat.h"
_echol 3 #include "user.h"
_forktest| 4
QF!!F'! ‘ int main(int argc, char #argv[]) {
_1r_11t| 6 //printf(1, "hello worldln");'
_kily 7 hello();
_tnl 8 exit();
_Lsj q }
_mkdiry
_rm}
—shl 23 % | char* sbrk(int);
_stressfs|
“usertests| - user.h 24 int sleep(int);
_wel 25 int uptime{void);
_zombie] 26 S5 int hello(void);

@ _test|

Step 2

usys.S

syscall.h

28
29
38
31
32
33

B Bl B B
W R e S

SYSCALL (getpid)
SYSCALL(sbrk)

SYSCALL(sleep)
SYSCALL{uptime)
SYSCALL(hello)

#define SYS_link

#define SYS_mkdir
#define S5YS _close
#define SYS_hello

19
20

22

Step 3

syscall.c

182
183
184
185
1086

126
127
128
129
138
131

LR SR S

extern int
extern int
extern int
extern int
extern int

sys_unlink(void);
sys_wait(void);
sys_write(void);
sys_uptime(void);
sys hello(void);

[SYS_unlink] sys_unlink,

[SYS link]
[SYS mkdir]
[SYS close]
[SYS hello]
}:

sys_link,

sys_mkdir,
sys_close,
sys_hello,

10

Step 4

- sysproc.c

- proc.c

- defs.h

536
537
538
539
348
541

el e
Fd Pd B B
MOE =2 WD o

'_'h
Lad

i)

1t

S SRS SRS T S R

int

sys_hello(void) {
hella();
return @;

void
hello(veid) {

cprintf({"\n\n Hello from your kernel space! ‘\n\n");

void
void
int

void
void
void

sleep(void+*, struct spinlocks);
userinit{veid);

wait(veid);

wakeup (void«);

yield(veid);

hello(wvoid);

11

Execute & check the result

S make gemu-nox
(... xv6 boots ...)

S test $ test

Hello from your kernel space!

12

Assignment a) change exit() signature to void exit(int status)

The exit system call must act as previously defined (i.e., terminate the current process) but it
must also store the exit status of the terminated process in the corresponding structure.

- Modify proc struct (proc.h) to include a new field that saves an exit status for a terminated

process. (e.g. int exitStatus;)

- You can either modify existing exit() system call in place or define a new system call; note
that if you make modifications in place, make sure you modify all locations of exit() call in
the codebase;

- Modify all relevant files correspondingly;

13

Assignment b) update wait() to int wait(int *status)

The wait system call must prevent the current process from execution until any of its child
processes is terminated (if any exists) and return the terminated child exit status through
the status argument.

- The goal is to get familiar with how to return a value from kernel space to user space;
- Return the terminated child proc’s exit status through the status pointer argument;
- understand the current wait() system call, in terms of how to traverse the ptable
to look up for child proc;
- understand the proc structure;

14

Assignment c¢) add a waitpid() system call

This system call must act like wait system call with the following additional properties:
The system call must wait for a process (not necessary a child process) with a pid that
equals to one provided by the pid argument.

- Hint: This will be a modified version of the original wait() system call. You will need
to traverse the ptable to find the proc with pid matches the given pid argument.

15

Assignment d) write a testing program

Write an example program to illustrate that your waitpid works. You have to modify the
Makefile to add your testing program so that it can be executed from inside the shell once
XV6 boots.

- Inyour report, show the printout of your testing program and illustrate why this
printout proves the correctness of your implementation.

16

To help finish lab 2 tasks:

- check out existing syscalls with parameters and return value;
- chapter 0-3 of xv6 book (https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf)

17

https://pdos.csail.mit.edu/6.828/2014/xv6/book-rev8.pdf

