
CS 450 Operating Systems
Semaphore

Yue Duan

Concurrency Goals
● Mutual Exclusion

○ Keep two threads from executing in a critical section concurrently
○ We solved this with locks

● Dependent Events
○ We want a thread to wait until some particular event has occurred
○ Or some condition has been met
○ Solved with condition variables and semaphores

2

Condition Variables
● CV:

○ queue of waiting threads

● B waits for a signal on CV before running
○ wait(CV, …);

● A sends signal() on CV when time for B to run
○ signal(CV, …);

3

API
● cond_wait(cond_t * cv, mutex_t * lock)

○ assumes lock is held when wait() is called
○ puts caller to sleep + releases the lock (atomically)
○ when awoken, reacquires lock before returning

● cond_signal(cond_t * cv)
○ wake a single waiting thread (if >= 1 thread is waiting)
○ if there is no waiting thread, NOP

4

CV Rules of Thumb
● Keep state in addition to CVs

○ numfull in producer/consumer problem

● Always cond_wait() or cond_signal() with lock held
● Use different CVs for different conditions
● Recheck state assumptions when waking up from waiting

○ use while instead of if

5

Semaphore
● CVs only have a queue.

○ State is managed by the programmer!

● Semaphores include some state (namely, a counter), which is managed
by the implementation.
○ less error-prone!

● Not easy to use as a general condition variable
● Pthreads just have locks and condition variables, but no semaphores

6

Semaphores (API)
● sem_init(sem_t * s, int init_count);
● sem_wait(sem_t * s);

○ decrements count, goes to sleep if == -1

○ sometimes also called p() or down()

● sem_post(sem_t * s);
○ increments count, wakes any waiters (sleepers)

○ sometimes also called v() or up()

7

thread_join()

8

Claim: Semaphores are equally powerful as lock+CVs

Types
● Binary semaphore

○ represents single access to a resource
○ guarantees mutual exclusion to a critical section
○ equals to a lock

9

Types
● General semaphore

○ multiple threads pass the semaphore determined by count
■ mutex has count = 1, counting has count = N

○ represents a resource with many units available
○ or a resource allowing some unsynchronized concurrent access (e.g.,

reading)

10

Producer/consumer with semaphores
● Simple case: one consumer/one producer
● Single shared buffer between them

○ max = 1

● Constraints:
○ Producer must wait for buffer to be non-full before producing

○ Consumer must wait for buffer to be non-empty before consuming

● Use 2 semaphores to get it right

11

Producer/consumer with semaphores

● What should the initial counts be?
○ emptyBuffer: Initialize to
○ fullBuffer: Initialize to 12

1
0

Producer/consumer with semaphores
● Simple case: one consumer/one producer
● Single shared (circular) buffer (with N slots) between them
● Constraints:

○ Producer must wait for buffer to be non-full before producing

○ Consumer must wait for buffer to be non-empty before consuming

● Use 2 semaphores to get it right

13

Producer/consumer with semaphores

● What should the initial counts be?
○ emptyBuffer: Initialize to
○ fullBuffer: Initialize to 14

N
0

Producer/consumer with semaphores

15

● General case: multiple producers/multiple consumers
● Single shared (circular) buffer (with N slots) between them
● Constraints:

○ Producer must wait for buffer to be non-full before producing

○ Consumer must wait for buffer to be non-empty before consuming

● Use 2 semaphores to get it right

Producer/consumer with semaphores

● Will this work?
○ no, why not?
○ that’s right, mutual exclusion! 16

Adding Mutual Exclusion

● Does it work?
● What’s the problem?

○ deadlock 17

Adding Mutual Exclusion

18

● Correct version!
● Is there a even better version?

Reader-Writer Locks
● Different data structure accesses might require different kinds of

locking
○ inserts change the state of a list
○ lookups simply read the data structure
○ as long as no insert is on-going, many lookups can proceed concurrently

● Let multiple reader threads grab lock (shared)
● Only one writer thread can grab lock (exclusive)

○ No reader threads

○ No other writer threads

19

Reader-Writer Locks
● General design

○ use a writelock semaphore to ensure that only a single writer can
■ acquire the lock
■ enter the critical section to update the data structure

○ when acquiring a read lock
■ the reader first acquires lock
■ increments the readers variable
■ the reader also acquires the write lock

● by calling sem_wait() on the writelock semaphore

20

Reader-Writer Locks

21

Reader-Writer Locks

22

THANK YOU!

23

