ILLINOIS TECH

College of Computing

CS 450 Operating Systems
Semaphore

Yue Duan



Concurrency Goals

e Mutual Exclusion
o Keep two threads from executing in a critical section concurrently
o We solved this with locks

e Dependent Events
o We want a thread to wait until some particular event has occurred
o Or some condition has been met
o Solved with condition variables and semaphores



Condition Variables

o CV:
o queue of waiting threads

e B waits for a signal on CV before running
o wait(CV, ...);

e A sends signal() on CV when time for B to run
o signal(CV, ...);



API

e cond_wait(cond_t * cv, mutex_t * lock)
o assumes lock is held when wait() is called
O puts caller to sleep + releases the lock (atomically)
o when awoken, reacquires lock before returning
e cond_signal(cond_t * cv)
o wake a single waiting thread (if >= 1 thread is waiting)
o if there is no waiting thread, NOP



GV Rules of Thumb

e Keep state in addition to CVs
o numfull in producer/consumer problem

e Always cond_wait() or cond_signal() with lock held

e Use different CVs for different conditions

e Recheck state assumptions when waking up from waiting
o use while instead of if



Semaphore

e CVs only have a queue.
O State is managed by the programmer!

e Semaphores include some state (namely, a counter), which is managed
by the implementation.
o less error-prone!

e Not easy to use as a general condition variable

e Pthreads just have locks and condition variables, but no semaphores



Semaphores (API)

e sem_init(sem_t * s, int init_count);
e sem_wait(sem_t * s);
O decrements count, goes to sleep if == -
O sometimes also called p() or down()
® sem_post(sem_t *s);
O increments count, wakes any waiters (sleepers)

O sometimes also called v() or up()



thread_join()

with locks and CVs

void thread_join () {
mutex_lock(&mn);
if (done == 0)

cond_wait(&c, &n);

mutex_unlock (&) ;

}

void thread_exit () {
mutex_lock(&");
done = 1;
cond_signal(&c);
mutex_unlock(&m);

with semaphores

sem_t sem;
sem_init(&sem, ???);

void thread_join () {
sem_wait(&sem);
}

void thread exit () {
sem_post(&sem);
}

Claim: Semaphores are equally powerful as lock+CVs




Types

e Binary semaphore
O represents single access to a resource

o guarantees mutual exclusion to a critical section
o equals to alock

sem_t m;
sem_init (&m, 0, X); // initialize to X; what should X be?

sem_wait (&m) ;
// critical section here
sem_post (&m) ;

o M e W N -



Types

e General semaphore
o multiple threads pass the semaphore determined by count
m mutex has count =1, counting has count =N
O represents a resource with many units available
O or aresource allowing some unsynchronized concurrent access (e.g.,
reading)

10



Producer/consumer with semaphores

e Simple case: one consumer/one producer
e Single shared buffer between them
o max=1
e Constraints:
O Producer must wait for buffer to be non-full before producing
O Consumer must wait for buffer to be non-empty before consuming
e Use 2 semaphores to get it right

11



Producer/consumer with semaphores

Producer Consumer

while (1) { while (1) {
sem_wait(&emptyBuffer); sem_wait(&fullBuffer);
put (&buffer); / get(&buffer);
sem_post(&fullBuffer); sem_post(&emptyBuffer);

} }

e What should the initial counts be?

o emptyBuffer: Initialize to 1
o fullBuffer: Initialize to O

12



Producer/consumer with semaphores

e Simple case: one consumer/one producer
e Single shared (circular) buffer (with N slots) between them
e Constraints:
O Producer must wait for buffer to be non-full before producing
O Consumer must wait for buffer to be non-empty before consuming
e Use 2 semaphores to get it right

13



Producer/consumer with semaphores

Producer
1= o
while (1) {

sem_wait(&emptyBuffer);
put(&buffer[i]);

i:(i+1)%N;
sem_post (&fullBuffer);

e What should the initial counts be?

o emptyBuffer: Initializeto N
o fullBuffer: Initialize to 0

Consumer
j=6;
while (1) {

sem_wait(&fullBuffer);
get(&buffer[j]);

= w i) %N
sem_post(&emptyBuffer);

14



Producer/consumer with semaphores

e General case: multiple producers/multiple consumers
e Single shared (circular) buffer (with N slots) between them
e Constraints:
O Producer must wait for buffer to be non-full before producing
O Consumer must wait for buffer to be non-empty before consuming
e Use 2 semaphores to get it right

15



Producer/consumer with semaphores

Producer
i = 83
while (1) {

sem_wait(&emptyBuffer);
put(&buffer[i]);

1 =01 #'1) % N;
sem_post(&fullBuffer);
}

e Will this work?
© no, why not?
o that’s right, mutual exclusion!

Consumer
j=0;
while (1) {

sem_wait(&fullBuffer);
get(&buffer[j]);

J=(j +1) % N;
sem_post(&emptyBuffer);

16



Adding Mutual Exclusion

Producer
i=0;

while (1) {

sem_wait(&mutex);

sem_wait(&emptyBuffer);
put(&buffer[i]);
i=(i+1)%N;
sem_post(&fullBuffer);

sem_post(&mnutex);

}

e Does it work?

e What’s the problem?
o deadlock

Consumer
j=20;
while (1) {

sem_wait(&mutex);
sem_wait(&fullBuffer);
get(&uffer[j]);
j=(j+1) %N;

sem_post (&emptyBuffer);

sem_post(&nutex);

17



Adding Mutual Exclusion

Producer
i=0;

while (1) {

sem_walt(&emptyButter);

sem_wait(&mutex);
put(&buffer[i]);
i=(1+1)%N;

sem_post(&mutex);

sem_post(&fullBuffer);

}

e Correct version!
e Is there a even better version?

Consumer

J = 0;

while (1) {
sem_wait(&fullBuffer);

sem_wait(&mutex);
get(&buffer[j]);
j=(3j+1) %N;

sem_post(&mutex);

sem_post(&emptyBuffer);

18



Reader-Writer Locks

e Different data structure accesses might require different kinds of

locking
o inserts change the state of a list
o lookups simply read the data structure
o aslong as no insert is on-going, many lookups can proceed concurrently

e Let multiple reader threads grab lock (shared)

e Only one writer thread can grab lock (exclusive)
O No reader threads
O No other writer threads

19



Reader-Writer Locks

e General design

o use a writelock semaphore to ensure that only a single writer can
m acquire the lock
m enter the critical section to update the data structure
o when acquiring a read lock
m the reader first acquires lock
m increments the readers variable
m the reader also acquires the write lock
e Dby calling sem_wait() on the writelock semaphore

20



Reader-Writer Locks

void rwlock_init(rwlock_t *1) {
l->readers = 0;
sem_init(&l->lock, 1);
sem_init(&l->writelock, 1);

void rw_readlock (rwlock t *1) {
sem_wait(&l->lock); // grab read lock
1->readers++; // this is the critical section
if (readers == 1) // since there are readers, writer must wait
sem_wait(&l->writelock);
sem_post(&l->lock); // other readers can continue

21



Reader-Writer Locks

void rw_readunlock (rwlock_t *1) {
sem_wait(&l->lock); // grab read lock
l->readers--; // this is the critical section

if (readers == @) // no more readers, writers can cont.

sem_post(&l->writelock);
sem_post(&l->lock); // other readers can continue

void rw_writelock (rwlock t *1) {
sem_wait(&l->writelock); // grab write lock
// only continues if there are no readers!

}

void rw_writeunlock (rwlock t *1) {
sem_post(&l->writelock); // release write lock
}

T1:acquire_readlock()
T2:acquire_readlock()
T3:acquire_writelock()
T2: release_readlock()
Tl:release_readlock()
T4: acquire_readlock()
T5:acquire_readlock()
T3: release_writelock()
/I what happens next!?

22



THANK YOU!



